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SUMMARY

A methodology has been developed for the computational simulation of struc-
tural fracture in fiber composites. This methodology consists of step-by-step
procedures for mixed mode fracture in generic components and of an integrated
computer code CODSTRAN (Composite Durability Structural Analysis). The generic
types of composite structural fracture include: (I) single and combined mode
fracture in beams, (2) laminate free-edge delamination fracture, and (3) lami-
nate center flaw progressive fracture. Structural fracture is identified by
rapid changes in one or all of the following: (I) displacements, (2) frequen-
cies, (3) the buckling loads, or (4) the strain energy release rate. These
rapid changes are herein assumed to denote imminent structural fracture. Based
on these rapid changes, parameters are identified which can be used as guide-
lines for (1) structural fracture, (2) inspectlon intervals, and (3) retirement
for cause.

INTRODUCTION

It Is generally accepted that flawed structures fail when the flaws grow
or coalesce to a critical dlmension such that (l) the structure cannot safely
perform as designed and qualified or (2) catastrophic fracture is imminent.
This is true for structures either made from traditlonal homogeneous materials
or flber composites. One difference between flber composites and traditional
materials is that composites have multiple fracture modes that initiate local
flaws compared to only a few for tradltional materials. Any predictive approach
to simulate structural fracture in fiber composites needs to formally quantlfy:
(I) these multiple fracture modes, (2) the types of flaws they initiate, and
(3) the coalescing and propagation of these flaws to cr}tical d}mensions for
imminent structure fracture.

An ongoing research activity at NASA Lewis Research Center is directed
toward the development of a methodology for the computational simulation of
structural fracture in fiber composites. A part of this methodology consists
of step-by-step procedures to simulate individual and mixed mode fracture in a
variety of generic composite components. Another part has been incorporated
into an integrated computer code identified as CODSTRAN for Composite Durability
Structural Analysis. The objective of the proposed paper is to describe the
fundamental aspects of this methodology and to illustrate its application to a
variety of generic composite structures.

*Senior Aerospace Scientist.
%Aerospace Englneer.



The generic types of composite structural fracture include: (1) single
and combined modefracture in beams, (2) lamlnate free-edge delamlnatlon frac-
ture, and (3) laminate center flaw progressive fracture. Structural fracture
is assessed in one or all of the following: (I) the dlsplacements increase
very rapidly, (2) the frequencies decrease very rapidly, (3) the buckling loads
decrease very rapidly, or (4) the strain energy release rate increases very
rapidly. These rapid changesare herein assumedto denote imminent structural
fracture. Basedon these rapid changes, parameters/guidelines are identified
which can be used as criteria for (1) structural fracture, (2) inspection
intervals, and (3) retirement for cause.

In the present study, computational simulation is defined In a specific
way. Also general remarks are included with respect to (I) generalization of
the procedure to large structures and/or structural systems, (2) experience
gained about conducting such a long duration research activity, and (3) research
needs in order to increase its computational efficiency, gain confidence, and
expedite its application.

COMPUTATIONALSIMULATION-DEFINITION

During the course of this research activity computational simulation has
evolved to have a speclflc meaning which is defined as follows:

"Description and quantification of the physlcs by progressive/
multiple applicatlon of elementary math models, which are derivable
from fundamental concepts, through the use of computers to obtain the
desired structural response with acceptable engineering accuracy."

In the context of the above definition, computational simulation is not
limited to:

(I) Applled Mathematics
(2) Approximate Analysls
(3) Numerical Analysis
(4) Numerical Testbed
(5) Solution Algorithm

However, it may include some or all of the above, plus many others.

END-NOTCH BEAM FRACTURE

In this section we describe the application of the structural fracture

concept to beams with end notches. Specifically, we describe structural frac-

ture as either: (1) Mode I, (2) Mode II, (3) combined Modes I and II, and

(4) combined Modes I, II, and Ill. The genera] procedure for the computational

simulation of structural fracture for beams with these types of fracture modes

are summarized in figure I. This general Drocedure is complemented with pro-

gressive finite element substructuring as will be described later in some

detai?. The beams are assumed to be made from AS-graphite fiber/epoxy matrix
(AS/E) with 0.6 fiber volume ratio (FVR).



Mode I

A schematic depicting the strain-energy release rate (SERR) in a double
cantilever is shown in figure 2. Two curves are shown in this figure: (I) the
solld llne for global SERR is determined using the displacement at the point
where the load is applied, and (2) the local SERR is determined by the crack
closure technique. For this case, structural fracture is imminent when the
crack length progresses to about 1.15 in. This length is determined by the
intercept of the tangents near the rapidly increasing portion of the SERR curve
(fig. I). The important observation is that the general concept is applicable
to even this relatively simple structure.

Mode II

A schematic of the end-notches inducing Mode II and combined Modes I and
II is shown in figure 3. The finite element model and the local progressive
substructuring are shown in figures 4 and 5, respectively. The details are
described in reference 1. Typical results obtained for Mode II are shown in
figure 6 where the measured range (ref. 2) is also shown. The crack length for
Imminent structure fracture is about 1.18 in. based on the global SERR curve.

Three points are worth noting:

(1) Mode II fracture exhibited some stable growth.

(2) The local approach predicts optimistic results relative to "critical"
crack length but conservative results relative to the critical SERR magnitude.
The reason is that the global approach incorporates the overall readjustment of
the structure whl]e the local does not.

(3) The SERR (G) Is within the measured range (ref. 2).

The important observation is that the computational simulation procedure cap-

tures the whole history of the process which leads to structural fracture

induced by Mode II fracture.

Combined Modes I and II

Typical results for combined modes I and II fracture in end notch beams
are shown in figure 7. Structural fracture is imminent when the crack length
progresses to about 1.14 in. (global SERR curve). The local curve, again, pre-
dicts optimistic magnitudes for critical crack length but conservative magni-
tudes for the critical SERR.

The decomposition to Modes I and II is also shown. These curves were

determined using the local closure technique (ref. l). Interestingly, struc-

tural fracture for this condition is driven by Mode I. Also, the curves for

Modes I and II resemble their respective independent parts in figures 2 and 6.

Furthermore, superposition of Modes I and II appears to apply to the local

mixed mode curve but not to the global curve. The important observation is

that structural fracture in beams subjected to combined (mixed) modes I and II

fracture can be computationally simulated and the respective "critical" param-

eters quantified from the general procedure in figure I.



Mixed Modes I, II, and III

The schematlc used to computationally simulate structural fracture in beams
subjected to mixed Modes I, II, and III fracture Is Illustrated in flgure 8.
Mode III is induced by the bending-shear coupling present in the unsymmetric
(+em/-e n) laminate. An enlargement of the regions modeled in the vicinity of
the crack tip, and used for progressive substructuring, is shown in figure 9.
The details are described in reference 3. Typical results of SERR versus crack
length for various unsymmetric laminate angles are shown in figure I0. The
important observations to be made is that the Mode III contribution to struc-
tural fracture is relatively insignificant compared to the other two. Also,
use of the global SERR is inclusive of the individual modes as well as any
influences of integrated structural effects. The influences of integrated
structural effects are not easily or, even at all, captured by local crack-
closure techniques.

Collectively the four different types of structural fracture described
demonstrate that structural fracture can be computationally simulated with
respect to:

(I) Its history from initiation to the onset of rapid (unstable)
propagation;

(2) Its critical parameters (for imminent rapid propagatlon);

(3) Its predominant fracture modes that drlve it

The very important point to be noted is that all of the above were obtained
without resort to the multitude of experiments that are usually requlred in
traditional fracture mechanics.

LAMINATE FREE-EDGE DELAMINATION FRACTURE

In this section we summarize the application of the structural fracture to
components subjected to free-edge delaminations under in-plane loading. Spe-
cifically, we describe the following types of delaminations: center, pocket,
and internal. Detailed descriptions on the simulation procedural steps are
given in references 4 and 5. Also the effects of delamination on buckling will
be briefly described. A schematic illustrating the origin of the interlamlnar
free edges that induce free-edge delamination is shown in figure II. A typical
simulation result is shown in figure 12 where the global strain energy release
rate (SERR) is plotted versus percent area delaminated. Although the SERR
initially rises very rapidly, it levels off by the I0 percent delamination and
settles into a stable delamination growth up to 70 percent.

Center Delamination

A photograph of a C-scan of a laboratory specimen with edge delamination
(ref. 6) and a schematic of its corresponding one obtained by computational
simulation are shown in figure 13 (ref. 5). The correspondlng SERR for three
different composite systems is shown in figure 14. The behavior of all three
curves in figure 14 is similar to that in figure 12--early rapid rise followed
by subsequent stable growth.



The observatlons to be madeare: (I) free-edge delamination in the pres-
ence of In-plane loads is benign; (2) different materlals can be readily evalu-
ated with respect to their structural fracture resistance; and (3) substantlal
area maydelaminate simultaneously with no change in the in-plane stress
states.

Pocket Delaminations

These delamlnatlons are believed to occur as follows: first, transply
splits develop simultaneously at several places along the free edge; second,
local delaminations develop in the vicinity of these splits due to high local
stresses. These local delaminations are called, herein, pocket delamina-
tlons. Upon subsequent loading, these pocket delaminations merge to center
delaminations.

Computational simulation results for these types of delaminations are shown
in figure 15 for three different composite systems. The merglng of pocket
delaminations to center delamination is identified by the "Jump" in the SERR
curve followed by a rapid decrease and subsequent stable growth similar to that
for center delamination in the previous section. The important observation is
that computational simulation captures the progression of this complex delami-
nation. The "jump" and subsequent "rapid decrease" can be used to guide stra-
tegic experiments to verify this sequenceof events. They can also be used to
interpret "stick-slip" type of progressive fracture prevalent in adhesively
bonded joints.

Interior/Center Delamination

These types of delaminations mayresult from lack of bonding durlng fabrl-
cation; or they mayoccur as a result of Inadvertent damage. Their growth to
imminent structural fracture can be computationally simulated as the other types
of delaminations. Results from these types of simulations for in-plane tensile
stress are shown in figure 16 (ref. 5). As can be seen, their Influence is
negl_gible until large areas (greater than 50 percent) have delaminated. Where-
upon the delaminations have reached the free edges. From here on, It behaves
llke a center-edge delamination.

The very important point to be noted is that internal delaminations are
benign in-plane tensile stress fields.

Delamination Effects on Structural Response

The delamination effects on structural response can be computationally
simulated as descried in reference 5. Typical results for the effects of
center-edge delamination on buckling load are shown in figure 17 for three dif-
ferent composite systems. The decrease in buckling load appears to be linear
and is relatively small (about 20 percent for 7-percent delaminated area). The
observation to De made is that local delaminations have negligible effect on
buckling loads. Although results are now shown here, internal/embedded delaml-
nations have even less effect. The same observations hold for delamination
effects on vibration frequencies.



CENTER-FLANPROGRESSIVEFRACTURE

Flaws in plate/shell type structures propagate to critical sizes for immi-

nent structural fracture. Research activities on progressive composite frac-

ture at Lewis during the last lO years have culminated in the development of

the CODSTRAN computer code (ref, 7). CODSTRAN (Composite Durability Structural

Analysis) has been specifically developed for the computational simulation of

progressive fracture in fiber composites (refs. 7 to 9). The modules compris-

Ing CODSTRAN are: (1) the executive module, containing communication links to

all other modules; (2) the I/O module; (3) the analysis module; (4) The compos-
ite mechanics module; and (5) the fracture mechanics module.

A schematic showing the logic of the code, with an analysis model and typ-
ical results is shown in figure 18 (ref. 8). The code tracks the damage growth

flaw propagation up to structural fracture. Simulation of progressive fracture

for different flaw types is shown in figure 18, and for different loading con-

dltlons in figure 19. The structural degradation in terms of vibration fre-

quencles and buckling load is shown in figure 20 (ref. 9). The collective

results from figures 18 to 20 demonstrate that progressive fracture in compos-

Ites can be computationally simulated: (1) to any level of detail, (2) for any

loadlng condition, and (3) for any structural response.

GENERAL REMARKS

Based on the continuing research effort described, some general remarks
are appropriate. These remarks include: (1) generalization, (2) experience

gained, and (3) future research needs.

Generalization

The computational simulation procedures described previously can be gener-
alized for structural fracture in composites as follows:

(l) Develop global structural/stress analysis model
(2) Apply specified loading conditions

(3) Identify hot spots for these loading conditions
(4) Introduce flaws in the hot spots

(5) With specified loads on the global model propagate flaws
(6) Monitor structural performance degradation (displacement, buckling

loads, frequencies)versus flaw propagation

(7) Identlfy flaw size for unacceptable performance degradation level
(8) Set qualification, inspection intervals, and retirement-for-cause cri-

teria based on the simulated history of structural performance degrada-

tion versus flaw propagation.

Experience Gained

The experience gained during this rather extensive research effort, lead

to the emergence of a suitable environment in order to successfully conduct

loosely-defined long-term research. This research environment includes the
following essential features:
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(I) Continuity in research activity
(2) Collection of participants' with composite knowledge in:

(i) Structural mechanics principles
(if) Finite element analysis

(iii) Composite mechanics
(iv) Fracture mechanics concepts

(3) Participants w|11ing to question traditional approaches
(4) Particlpants w_lling to adopt/invent new approaches
(5) Continuing and unwavering management support
(6) Availability of computer facilities and supporting personnel

These features can serve as guidelines to conduct long-term research in compu-
tational simulation in general.

Future Research Needs

Assuming the state-of-the-art on composite structural fracture is as
described herein, the authors consider the following as near-future research
needs:

(I) Incorporation of uncertainties in the simulation
(2) Development of specialty: (I) finite elements, (2) boundary elements,

and (3) functions, all of which include local details and capable of
capturing steep gradients and thereby provide computational efficiency

(3) Efficient self-adaptive global/multilocal scale methods
(4) Time dependence and multiline scaling (local events simulated in

different tlme scales compared to global)
(5) Formulation/programming for parallel processors
(6) Adaptation to smart structures and health monitoring systems

CONCLUSIONS

Based on the results of the research on computational simulation for
structural fracture in composite the following conclusions are made:

I. Computational simulation of structural fracture in composite structures
is ready for extension to wide use applications.

2. Reluctance to adopt it is natural because of: (i) unfamiliarity and

(ii) attachment to traditional approaches.

3. Reluctance can be overcome by: (i) education, (ii) using it first in

parallel with traditional approaches, and (iii) make it a specification

requirement by the procuring agencies in new designs.
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structural fracture include: (1) single and combined mode fracture in beams, (2) laminate free-edge delamination

fracture, and (3) laminate center flaw progressive fracture. Structural fracture is identified by rapid changes in

one or all of the following: (1) displacements, (2) frequencies, (3) the buckling loads, or (4) the strain energy
release rate. These rapid changes are herein assumed to denote imminent structural fracture. Based on these rapid

changes, parameters are identified which can be used as guidelines for (1) structural fracture, (2) inspection

intervals, and (3) retirement for cause.
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